CGedledmiinlk

Come concerne about cafetly for coftware-intencive systems,

and ar. Introduction to STPA

Paul Sherwood 24 Oct 2018
@devcurmudgeon
www.devcurmudgeon.com

NB: Codethink-branded slides are mine, the rest are from MIT

Gedeminlk
Intro: @devcurmudgeon

CEO Codethink (.com)
Stealing Spitfires (Spotify)
Shut Up And Shoot Me (IMDB) STEALING SPITEIRES
Software Commandments (github)

YBD: Yaml Build Deploy (gitlab) w

www.devcurmudgeon.com

1f 1 Kill You, Will You Leave Me Alone?

python/ruby/git/C and vi L RS
skeptical, opinionated and grumpy

with trust issues

insisting on honesty

CGedemiinlk

Intro: Codethink

About Commandments o
@ Services Join Us
| rm Technologies Contact @
Trustable Updates

The Systems Software Experts

Codethink delivers critical technology services and solutions for international
corporates, finance, medical, telecoms, aerospace and automotive.

We develop and maintain system-level software and infrastructure within three
trusted practices:
o ENTERPRISE

o DEVICES
o AUTOMOTIVE

Who has read any of the safety standards?

Gedlemiinlk

Working hypothesis: software trustability factors

Functionality Reproducibility Safety

we could base our trust on evidence for each/all of these

https://trustable.io @@%ﬂ?ﬁ%

Compliance

Patch me, if you can: Grave TCP/IP Codldiall
flaws in FreeRTOS leave loT gear open
to mass hijacking

AWS-stewarded net-connected platform has multiple
remote code execution vulnerabilities

By Shaun Nichols in San Francisco 22 Oct 2018 at 20:05 13(Q) SHARE Y

RIS

i

Serious security flaws in FreeRTOS — an operating system kernel used in
countless internet-connected devices and embedded electronics — can
be potentially exploited over the network to commandeer kit.

Subaru Destroys 293 Ascent SUVs After Gedleltmitnllx
COding EI‘I‘OI‘ Leads t() Unsafe Ca I'S You thought Dieselgate was over? It's not.

The scandal of Volkswagen caused political turmoil in Germany
A coding error led robots to miss welds on 293 of Subaru's Ascent 2019 SUVs. By Wolfgang Kerler | Sep 18, 2018, 5:46pm EDT

How One Recalled SUV Destr
Yt SR 0w One Recaled SUV DEEHREES

_ $45 Million In Cars, Burned A
HACKERS REMOTELY RILL A

Massive Ship, And Sparked A
h]/IEEE%)N% THE HICHWAY—WITH Iéel\\;clj‘i’avl Battle Between Ford And

The number of recalls linked to electronic failures has risen by 30 per cent a

year since 2012, compared with an average of 5 per cent a year between 2007

and 2012, according to data from consultancy AlixPartners.

Our current tools are all 40-65 years old
but our technology is very different today

e

} (D
)J{‘;,

-‘ - &
‘ AHEAD p
NV

1340 1950 1960 1970 1980 1990 2000 2010 o
I l l
FMEA FTA I ETA
HAZOP » Introduction of computer control
Bow Tie » Exponential increases in complexity

(CCA) > New technology

A=A » Changes in human roles

,ﬁssumes accidents caused
~ by component failures

safety standards (Ec 61508, ISO 26262, MISRA C etc)

expensive, not public, protected by strange EULAs
mostly arose incrementally from mech eng reliability
graduated to simple electronics, then microcontrollers
... and then defined rules for the software that could be
trusted to run on microcontrollers (e.g. MISRA C)

e |ots of special language (e.g. “...out of...")

The underlying principles are:
e “make your components reliable”
e assure software by enforcing 90s style engineering process

safety standards

Some dangerous misunderstandings have arisen:

treat microprocessors as big microcontrollers

choose pre-certified software for its magical safety powers
combine 2 ASIL B components to achieve ASIL D

safety design can be achieved via component reliability

these are all fundamentally WRONG

Software for Safety: 80s/90s Gdelniinlk

Development Environment Target Environment

Carefully crafted

C/ADA

certified tools

microcontroller

SIL/ASIL certified

Software for Safety: as time goes by... Cedelbhinle

(we need to think about all of parts, not just the kernel and some MISRA C)

Development Environment Target Environment
off-board applications
deployment infrastructure SOTA
CI/CD infrastructure
FOSS components applications
bought-in components SOTA middleware + libraries
certified tools operating system init
uncertified tools kernel
IDE boot loader
toolchain drivers drivers
operating system firmware firmware
in-house IT cloud other silicon SoC

SIL/ASIL certified Not certified

Software for Safety: 2018

(safety for connected devices involves security, obviously...)

Development Environment

off-board applications

deployment infrastructure SOTA

CI/CD infrastructure

Target Environment

CGedemiinlk

Hypervisor Environment

applications

SOTA middleware + libraries
FOSS Components appllcatlons - operating system init
bought-in components SOTA middleware + libraries kernel
certified tools operating system init boot loader
uncertified tools kernel hypervisor
IDE boot loader boot loader
toolchain drivers drivers drivers drivers
operating system firmware firmware firmware _
in-house IT cloud other silicon SoC other silicon SoC
SIL/ASIL certified Not certified . Who knows?

sdelmiinlk

Safety has to evolve to handle complex software...

Electromechanical safety and
reliability requirements (for
seatbelts,airbags, brakes,
steering, lights etc)

Simple
electronics
and software
safety and
reliability
requirements

Complex
electronics
and software
safety and
trustability
requirements

We can’t guarantee behaviour of software at scale. So safety designs need to expect misbehaving software

CGedelsminlk

http://psas.scripts.mit.edu/home/

Increasingly recalls/accidents are due to:
o specification/requirements errors
o interactions between components

STPA HANDBOOK Safety is not the same as reliability

mNNc;.GT' :;\::;m Safety is a system property, not a component
property

A system composed of reliable components is

not necessarily safe

MARCH 2018

This handbook is intended for those interested in using STPA on real systems. It is not meant

Gedelmitinlk
Working hypothesis: software trustability factors

Functionality Reproducibility Safety

safety and security are (emergent) system properties, not just software

Compliance

STAMP STPA CAST

Model requirements accident

Framework an a/yg'/,(' rnvestigation

STPA: systematic top-down analysis

e Applicable for both safety and security design
e Led by MIT, increasingly adopted in automotive and other industries
e Some standards are now taking this approach STAMP/STPA

DAIMLER
- = ontinental'$.
'I///AME\J C mmmnmm

O & sy < soscn g Voo
RENAULT

ANALOG ” TEXAS Other large silicon
DEVICES INSTRUMENTS ‘ ’ valley companies*
WAYMO

Institute of

I I I W BN Massachusetts
Technology

* System engineering
foundation [

— Define accidents,
STPA Hazard system hazards,

— Control structure

Controller

TFeed back

Controlled
process

Analysis

STAMP Model * Step 2: Identify

accident causal
scenarios

58

’ SYSTEM DEVELOPMENT

Congress and Legislatures

Legislation l W Lobbying

Accidents

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Government Reports

Hearings and open meetings

gegulaﬁuns Certification Info.
tanld.ard§ Change reports
Certification Whistieblowers
Legal penalties Accidents and incidents
Case Law
Company
Management
Safety Policy Status Reports
Standards Risk Assessments
Resources Incident Reports
Policy, stds. Project

Hazard Analyses

Safety Standards L
Progress Reports

Design,
Documentation

Safety Constraints
Standards
Test Requirements

Test reports
Hazard Analyses
Review Results

Implementation
and assurance

Safety
Reports

Hazard Analyses
Documentation

Manufacturing

Management Design Rationale
Work safety reports
Procedutes | audits
work logs
inspections

Manufacturing

Hazard Analyses
Safety-Related Changes
Progress Reports

Operating Assu
Operating Pro

—_—

Revised

operating procedures v

SYSTEM OPERATIONS ‘

Congress and Legislatures
Government Reports
Lobbying
Hearings and open meetings
Accidents

Legislation

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Regulations
Standards
Certification
Legal penalties
Case Law

Accident and incident reports
Operations reports
Maintenance Reports
Change reports
Whistleblowers

Company
Management

Safety Policy
Standards
Resources

Operations Reports

Operations
Management

Change requests
Audit reports
Problem reports

Work Instructions

mptions
cedures

Operating Process

Human Controller(s)
A

Automated
Controller <—I

Maintenance

and Evolution

Software revisions
Hardware replacemel

] Actuator(s) \ I Sensor(s) I

nts

Problem Reports

Incidents

Change Requests

Performance

Audits

Figure 4.4: General Form of a Model of Socio-Technical Control

STPA Step 1: Unsafe Control Actions (UCA)

Controller

Controlled

4 ways unsafe control may occur:

* A control action required for safety is not provided or is not
followed

Feedback * An unsafe control action is provided that leads to a hazard

* A potentially safe control action provided too late, too early,
or out of sequence

process * A safe control action is stopped too soon or applied too long
(for a continuous or non-discrete control action)
Stopped Too
Incorrect Soon /
Not providing Providing Timing/ Applied too
causes hazard | causes hazard Order long

Shifter))))
Command 8 8 » .

STPA Step 2: Identify Causal Factors

* Select an Unsafe Control Action
A. ldentify what might cause it to happen

»

— Develop accident scenarios
— Identify controls and mitigations
B. Identify how control actions may not be
followed or executed properly
— Develop causal accident scenarios
— Identify controls and mitigations

Gededmiinlk
STPA Method: applicable before, during, after

Ign
Ejoggesg» Hazards => Control Diagram => Controllers, Signals, Feedback
For each controller, signal, feedback:

|[dentify Unsafe Control Actions:

Controller + Action + Type + Context
Establish Requirements:

Negate the UCAs

And then iterate to refine the details from control diagram to requirements

Gededmiinlk
STPA Method: example

Losses

e |-1: Loss of life or injury to people

e |-2: Loss of or damage to vehicle

e |-3: Loss of or damage to objects outside the vehicle
e |-4: Loss of transportation mission

e |-5: Loss of traffic flow (road blockages etc.)

e |-6: Loss of customer satisfaction

e |-7: Environmental impact

Hazards

e H-1: Vehicle does not maintain safe distance from terrain and other obstacles [L-1, L-2, L-3, L-4, L-5, L-6]

e H-2: Vehicle drives too fast [L-1, L-2, L-3, L-4, L-5, L-6, L-7]

e H-3: Excessive braking [L-1, L-2, L-3, L-4, L-5, L-6, L-7]

e H-4: Vehicle does not follow traffic flow e.g. jumps red lights, drives on wrong side of the road [L-1, L-2, L-3, L-4, L-5, L-6, L-7]
e H-5: Vehicle is unpredictable to others e.g. no indicators, drives on wrong side of road [L-1, L-2, L-3, L-4, L-5, L-6]

Gl
STPA Method: example continued g™

9 boxes

~ 20 arrows

~ 50 control/feedback signals
~ 200-500 requirements?

| Test route planner |

| safety Driver =] Safety Monitor |

B-stop B-stop

Test Route]or Destination HD Mapping

EH}Map ®
m |m =

n {. .'\Jon—aul)nomous mode sensor data

yoeqpaad

External Autonomy Sensors

| | 1
| Vehicle [Environment |

STPA Method: example continued

Gedledmiinlk

Scale/complexity

20 boxes

~ 40 arrows

~ 100 control/feedback signals

[Test route planner | ~ up to 1000 safety requirements?
Test Route or Destination
|_Safety Driver = Safety MonitorJ |
Estop Estop [Apollo UMI__] I HD Mapping |
Dgstination? HO{Map Non-au]onomous mode sensor d:

F[‘\'{ﬂ ---------- o el ———— 1

Ll Routing | i

i C T 3 :

12 Planning 11 Preditction | i o

1 4 | H o)
o

i [Perception | i <3

= 1 ‘ : =

' —

i [Localization ‘_FJB-M;” I\:/Ia

| CHpusiedis; | H Y N S di

S ——— e K s b - s—¢ da
— 3party interface________ | WllEellme] Ld 2 ng External
M rdl rd2 Autonomy
; Sensors

Vehicle

Environment

Gedledmiinlk

STPA Method ... thoughts so far

control architecture is easier to analyse than physical/logical

in theory we can get to a complete set of safety requirements

this is systems engineering, not just software

must involve analysis and mapping of losses => requirements => design
iteration is involved: we need tooling with version control, reviews etc

the current foss-applicable tools are not great (so folks use visio, excel, word)
not enough actual analyses have been made public

there is no magic
but top down is IMO the only sensible startpoint

