
Introduction to STPA

Paul Sherwood 24 Oct 2018
@devcurmudgeon

www.devcurmudgeon.com

SomƄ ƂƨƧceƑƧs ƀƁƨuƭ sƀƅƞƭy ƅoƫ sƎƅƭwƚƑe-inƓƄƧsƢƕe ƬyƒƭƄmƒ ,
 anƃ ƀƧ

NB: Codethink-branded slides are mine, the rest are from MIT

Intro: @devcurmudgeon
● CEO Codethink (.com)

● Stealing Spitfires (Spotify)

● Shut Up And Shoot Me (IMDB)

● Software Commandments (github)

● YBD: Yaml Build Deploy (gitlab)

● www.devcurmudgeon.com

● python/ruby/git/C and vi
● skeptical, opinionated and grumpy
● with trust issues
● insisting on honesty

Intro: Codethink

Who has read any of the safety standards?

Working hypothesis: software trustability factors

Functionality

Provenance

Reproducibility

Reliability

Compliance

Safety

Security

we could base our trust on evidence for each/all of these

https://trustable.io

safety standards (IEC 61508, ISO 26262, MISRA C etc)

● expensive, not public, protected by strange EULAs
● mostly arose incrementally from mech eng reliability
● graduated to simple electronics, then microcontrollers
● ... and then defined rules for the software that could be

trusted to run on microcontrollers (e.g. MISRA C)
● lots of special language (e.g. “...out of...”)

The underlying principles are:
● “make your components reliable”
● assure software by enforcing 90s style engineering process

safety standards

Some dangerous misunderstandings have arisen:

● treat microprocessors as big microcontrollers
● choose pre-certified software for its magical safety powers
● combine 2 ASIL B components to achieve ASIL D
● safety design can be achieved via component reliability

these are all fundamentally WRONG

Software for Safety: 80s/90s

Development Environment

microcontroller

Carefully crafted
C/ADA

certified tools

Target Environment

SIL/ASIL certified

Software for Safety: as time goes by...
(we need to think about all of parts, not just the kernel and some MISRA C)

SoC

firmware

drivers

other silicon

firmware

drivers

boot loader

kernel

initoperating system

middleware + libraries
applications

toolchain

IDE

bought-in components

FOSS components

CI/CD infrastructure

deployment infrastructure SOTA

operating system

SOTA

Development Environment
off-board applications

in-house IT cloud

certified tools
uncertified tools

Development Environment Target Environment

SIL/ASIL certified Not certified

Software for Safety: 2018
(safety for connected devices involves security, obviously...)

SoC

firmware

drivers

other silicon

firmware

drivers

boot loader

kernel

initoperating system

middleware + libraries
applications

toolchain

IDE

bought-in components

FOSS components

CI/CD infrastructure

deployment infrastructure SOTA

operating system

SOTA

Development Environment

SoC

firmware

drivers

other silicon

firmware

drivers

boot loader

kernel

initoperating system

middleware + libraries

applications

SOTA

machine
learning/AI

boot loader

Hypervisor Environment

off-board applications

hypervisor

in-house IT cloud

certified tools
uncertified tools

Development Environment Target Environment

SIL/ASIL certified Not certified Who knows?

Safety has to evolve to handle complex software...

Electromechanical safety and
reliability requirements (for
seatbelts,airbags, brakes,
steering, lights etc)

Complex
electronics
and software
safety and
trustability
requirements

We can’t guarantee behaviour of software at scale. So safety designs need to expect misbehaving software

Simple
electronics
and software
safety and
reliability
requirements

http://psas.scripts.mit.edu/home/

● Increasingly recalls/accidents are due to:
○ specification/requirements errors
○ interactions between components

● Safety is not the same as reliability
● Safety is a system property, not a component

property
● A system composed of reliable components is

not necessarily safe

Working hypothesis: software trustability factors

Functionality

Provenance

Reproducibility

Reliability

Compliance

Safety

Security

safety and security are (emergent) system properties, not just software

STAMP STPA CAST

 ModƄƋ reƐƔƢƫemƄƍƭs acƂƈƝƞnƓ
 fƑaƦƄwƨƑƤ anƀƋƲsƢƒ inƕƄƬtƢƆaƭƈƨn

STPA: systematic top-down analysis
● Applicable for both safety and security design
● Led by MIT, increasingly adopted in automotive and other industries
● Some standards are now taking this approach

STPA Method: applicable before, during, after
design
Losses => Hazards => Control Diagram => Controllers, Signals, Feedback
For each controller, signal, feedback:

Identify Unsafe Control Actions:

Controller + Action + Type + Context

Establish Requirements:

Negate the UCAs

And then iterate to refine the details from control diagram to requirements

STPA Method: example

STPA Method: example continued Scale/complexity
9 boxes
~ 20 arrows
~ 50 control/feedback signals
~ 200-500 requirements?

STPA Method: example continued Scale/complexity
20 boxes
~ 40 arrows
~ 100 control/feedback signals
~ up to 1000 safety requirements?

STPA Method ... thoughts so far
● control architecture is easier to analyse than physical/logical
● in theory we can get to a complete set of safety requirements
● this is systems engineering, not just software
● must involve analysis and mapping of losses => requirements => design
● iteration is involved: we need tooling with version control, reviews etc
● the current foss-applicable tools are not great (so folks use visio, excel, word)
● not enough actual analyses have been made public

● there is no magic
● but top down is IMO the only sensible startpoint

